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HARMONIC VIBRATIONS OF PRETWISTED PLATES

JORGEN JUNCHER JENSEN

Department of Solid Mechanics, The Technical University of Denmark, Lyngby, Denmark

Abstract—In this paper shell theory is used to analyse the free vibrations of thin, uniformly pretwisted, rect-
angular plates, simply supported at two opposite edges and free at the other two edges.

From the shell equations we can deduce that coupling between torsional and bending vibrations never occurs
independent of the pretwist. Furthermore, it is shown that the eigenfrequencies are in all cases even functions
of the angle of pretwist.

When the pretwist is small the shell equations are solved by means of regular perturbation, and the solution
shows that the ratios between the bending frequencies with and without pretwist can be either greater than or
smaller than unity, depending on the geometry of the plate.

INTRODUCTION

THE development of turbine blades has resulted in a great deal of work on pretwisted
beams and plates.

All the problems relating to pretwisted, rectangular beams have been solved using
the ordinary Bernoulli-Euler beam theory. In particular, Troesch, Anliker and Ziegler [1]
and Anliker and Troesch [2] have found the eigenfrequencies for all possible combinations
of simple boundary conditions.

More difficulties arise when it is necessary to use Timoshenko’s beam theory or,
especially, when a shell theory is used, because of the complexity of the governing equations.

Most of the problems that have been solved by means of shell equations concern the
static behaviour of thin, rectangular, pretwisted plates. Knowles and Reissner [3] deter-
mined the torsional rigidity and the axial stiffness as functions of the angle of pretwist,
solving the differential equations by means of a perturbation method. The solution of the
bending problem is given by Wan [4, 5] and by Maunder and Reissner [6].

In the determination of the eigenfrequencies a serious problem arises as even for a
flat, rectangular plate, analytical solutions only exist for very few combinations of the
simple boundary conditions. Nordgren [7] found the eigenfrequencies for pretwisted,
rectangular plates with two opposite edges simply supported and the two other either
free or simply supported. These solutions were based on a formulation of shallow shell
solutions for elastokinetics given by Naghdi [8]. Furthermore, approximate formulae for
the torsional frequencies are found by Reissner and Washizu [10] and by Di Prima [11].

The present work treats the same problem as [7), but a more general shell theory given
by Niordson [9] will be used. The shell equations will be solved by a regular perturbation
method when the pretwist is small.
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1. SHELL THEORY

Surface geometry
As shown in Fig. 1, we choose a coordinate system so that a point (1!, u?) on the middle
surface of the pretwisted plate has the cartesian coordinates

f1 = u'cos(u?/k),  f?=u'sin(u?/k), f3=u? (1)

FiG. 1.

where
k=L/®, (2

L is the length, R the half-width and © the total pretwist of the plate.
In the following we shall use, for the sake of brevity,

ul =r (3)

and in all definitions and relations to follow, Latin indices denote three-dimensional

cartesian components, while Greek superscripts and subscripts refer to contravariant and

covariant surface tensor components. The summation convention is applied as usual.

Partial differentiation with respect to the surface coordinates is denoted by commas, and

covariant differentiation (based on the geometry of the undeformed shell) is denoted D,.
The metric tensor is

10
Bat = (0 a) @)
where
a = det(a,p) = (r2 +k2)/k2. (5)

The normal to the plate
X' = a *(sin(u?/k), —cos(u?/k), r/k). (6)
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The covariant and the mixed curvature tensor are

—1{0 1
duﬁ = k—lfk 10 (7)
and
—~1{0 a!
dé = @(1 0 ) (8)

The only nonvanishing components of the Christoffel symbols are

1 — 2 2 ,
{2 2}=7’ {1 2}={2 1}=Ek_2‘ ©)

It should be noted that this geometry refers to the undeformed middle surface.

Deformations

According to the theory of shells given by Niordson [9], the deformations of the middle
surface can be completely described by the membrane strain tensor

E,; = 3(Dvs+ Dgv,) —dygw (10)
and the bending strain tensor
K,; = D,Dgw+d,,Dgv’ +dg Do’ +0'Dyd,, —dg,diw (11)

where 1v* and w are the displacements in the direction of the surface base vectors and in
the direction of the surface normal, respectively. These displacements are functions of
u', u? and time t. Niordson’s shell equations are a consistent first-order, linear shell theory
in the sense of Koiter [12].

The relations between 1%, w and the displacements & in the cartesian coordinate system
are given by

B = fLut+ Xiw. (12)

Hooke’s law

For the homogeneous and elastically isotropic medium we assume the following
constitutive equations

N* = D,((1—v)E*+va*E?) (13)
and
M* = D((1 - v)K* +va*’K?) (14)

where E is Young’s modulus, v is Poisson’s ratio, and h is the plate thickness. Further-
more, D and D, are defined by

PO
T 12(1—v3)
and (15)
Eh
Dl = 2"

1—vy
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The stresses and the couples are given in terms of the symmetric membrane stress tensor
N and the symmetric moment tensor M*#,

The equations of equilibrium
The equilibrium conditions are
D ,N**+2d8D M*+ M*D,dé+ F* = 0 (16)
and
D,DyM** —d pdM* —d ;N*—p = 0 {17

where F* and p are the external loads per unit area of the middle surface, acting in the
directions of the surface base vectors and the surface normal, respectively. In the following,
where we are concerned with free vibrations, the external loads are equal to the d’Alembert
loads.

The d’Alembert loads per unit volume:

p'= —pnd (18)
where p,, is the density and the acceleration @' is determined by
C i .
a =i+ { }r}"és ~ (19)
ks

We have neglected nonlinear terms because we are using a linear shell theory. A dot
denotes differentiation with respect to time. In equation (19) v* means w.

According to [9] we transform the body forces p' to equivalent surface forces as follows
{where the variation of the displacements across the shell thickness is neglected):

h 1 R
F* =J- P62 —diz)(1-2Hz+ Kz%) dz = —pmﬁ“h(l————z—z) (20)
—h 12 k“a
and
o 2 2yd whi 1 L 21
p=f_%hp(l—~ Hz+ Kz%) z—-—pmw( —-ﬁﬁ) 2n
where we have made use of
H = the mean curvature = $d? = 0
K = the Gaussian curvature = g™ ! det{d,;) = —(ka)~ 2.
In the linear approximation, the free vibrations will be harmonic, i.e.
Hul,ut ) = —0®r*W',u?t) and W, ult) = —w?wul,u? 1) 22)

where o are the eigenfrequencies of the shell.

From now on, v% w denote the displacements as functions of u*, u? only, and the total
displacements are then given by v”sin wt and w sin wt, with suitable choice of the time
origo. The same applies to all other functions of v* and w, because of the linearity, and in
the following these functions represent the (u', u*) dependent parts only.
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Boundary conditions

The plate under consideration is simply supported at u*> = 0, L and free at u* = +R.
According to the theory of shells [9], the boundary conditions on a free edge are

T*=0=Mz;=0 {23
and the boundary conditions at a simply supported edge, with normal constraint, are
w=1'n, =T =Mg=0 24)
where the effective boundary membrane force per unit length is
T* = (N + &EMP + %t ' MP)ny, 25

the effective transverse force per unit length is
8
g=—(DM gﬁ)ngf"’é;{Mgggnatﬁ}s (26

and the b~ ding moment per unit fength is
My = M*n,n,. (27)

Furthermore, n, denotes the unit normal vector to the edge (in direction outward from
the edge}, ¢, denotes the unit tangent vector, and s measures length along the edge.
Between n, and ¢, there exists the following relation

N, = Bygth (28)
where
. 01
gp=a {mi G)' {29}
Furthermore,

b, du® ¢ 46
- d o laE (30)

Application of {23-30} results m the following boundary conditions at the free edges
where n, = +(1,0)

2
ISR Vel 21
N kan 0, N 0,
3h
MY +2ME-5MP =0, M"Y =0
and at the simply supported edges, where n, = +a*(0, 1),
w=p’ =0
32

N =0, M?Z = Q.

Now the complete set of equations to determine v* = v¥(u', u?), w = wu*, ¥?) and @
are given.
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2. NON-DIMENSIONALIZATION AND SIMPLIFICATION

We introduce the following dimensionless functions

p=r/R

y = h/R

A = R/k = R®/L

w = w/R

v* = v*/R (33)
m* = M**/RD,
n* = N*¥/D,

PR 1 IR 2
Q = wR/(D/pnh)* = &L*[(D/pyh). Ji\L

The last equation shows the relation between Q and wL?/(D/p, h)?, which is normally
used in the literature as dimensionless frequency.

Substitution of equation (33) in the complete set of equations transforms these into
the following form (where E* and K* have been eliminated)

a = 1+p2/12
/12
nil = U,%+V(U’22+p——vl)
a

1 24
n*! = 41— v)(v,z1 +av,12 +Ew)

1 A2
n?? = —(022+p—v‘+vv‘1)

a\ " a ’

24, A 22 22 A
_— w,ll aiv‘l a2w+a W22'+‘p Wl_‘a’;vz'— w

a
2 22 2
1—v A A A
m2t = —(w,21 —p—w,z——— vh +0) +E——v‘))
a a a

12 a *
2 2
m2? = 7 a—z(w,22+p/12W,1 —;50,12_;“’4“"1 W,11_”‘;§U,21 "aTW (34)

pA 2 pA? 1 A%y?
n,111+n,221+7n“—p/12n22—a—% m2 +m22 + 2 - m21) +Q2p! 1_1_2 | =

3pi2

L+l 4

22 1 A%?
(m1+m2)+92 2( ‘1_‘2‘7 =0
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2pA? 4pA?
mll, +2m2, 4 m’222 + Pa mil 4+ l; m’221_p,12m’212_2/12m22

24 51 2 1 A%y?
+Fn —Q%w 1—1—2 p =0
p=+1:n' m2! =n21=m,111+2m,221—p/12m22=m“=0

at

u’/R =0,L/R:w = v = m*?> = n*!' = 0.

Now , and , means differentiation with respect to p and u?/R, respectively. It can be
shown that these equations are in agreement with [3-5].

From equations (34), we can deduce the following results:

(1): The equations can be separated into a system of ordinary differential equations
by the substitution

w(p, W*/R, A) = Alp, A) sin(nu*/R)
v'(p, u*/R, A) = B(p, 4) cos(nu’/R) (35)
v*(p, u*/R, ) = Clp, ) sin(nu*/R)

where

,,:mn%, m=12,.... (36)

In particular, it will be seen that the boundary conditions at u?/R = 0, L/R are
identically satisfied.

Equations (35) show that the u?-dependence of the displacements is independent of
the pretwist A.

(ii) : Inspection of equation (34) shows that the solution depends on 4 in one of the
following ways

@) {w, m'' m?*' m?*?,Q even functions of 1
a

vl 02, ntt n?t n?? odd functions of 4

(b) {v‘, v, 0t n? n?2Q even functions of 1

w,m!! m?!, m?? odd functions of 4.

When 1 = 0, i.e. without pretwist, the first solution is reduced to the normal plate-
solution, where v* = v? = n*® = 0, and the second solution is reduced to the disc-solution,
where w = m*® = 0.

This shows, as is known, that there is no coupling between plate-like and disc-like
vibrations for a flat plate. On the contrary, equations (34) show that such coupling occurs
when the plate is pretwisted.

Note that the eigenfrequencies Q are always even functions of A, which, physically,
means that they are independent of the direction of the pretwist.
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(iii): We further see that the solution to equation (34) depends on p in one of the
following two ways:

w, o', m'!, m?2, n?! even functions of p

{02, m?t, 't n*? odd functions of p

o {02, m2l, ntt, n?? even functions of p
w, vl m'l, m?? n?! odd functions of p.

This is due to the fact that a function, defined in a closed interval, can always be decom-
posed into an even and an odd part and that when an even/odd function is differentiated,
we get an odd/even function.

The physical significance of these results is most easily seen by looking at the dis-
placements, transformed to the more convenient cylindrical coordinate system,

7, = the radial displacement = v'

_ . C row
Dg = the circumferential displacement = vzz——;
a

e r
#, = the axial displacement = vz+§-§w.
a

Thus the circumferential displacement is either an even or odd function of p and con-
sequently, the bending and the torsional vibrations are always uncoupled.

Perturbation solution

When equation (35) is substituted in (34) we obtain a set of ordinary differential
equations nonlinear in A. These equations cannot be solved in analytic form for any value
of 4, but in the following, they are solved on the assumption that the pretwist is small, i.e.

A« i 37)

To solve the equations (34) with (37), we expand all terms in equations (34} in power
series in 4 and obtain a new set of equations that are independent of 4. As unknown we
have the coefficient functions in the power series,

Alp, 2) = Aolp)+ A4 (p)+ A% A,(p)+ O(2%)

B(p, ) = By(p)+AB (p)+ A*B,(p)+ O(1%)

Clp, 2) = Colp)+AC,(p)+ A*Cylp)+ O(2%)
Q) = Q,+12Q, + 0(1%).

(38)

The coefficients with index O refer to the solution for a flat plate.
As a further simplification we will only consider one of the four possibilities mentioned
before, namely plate-like bending vibrations, and consequently we find

Azie1lp) = Bylp) = Colp) =0, i=0,1,2,... (39)
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and
Az{p) = Az —p)
Byi+1(p) = Byt i(—p) (40)
Cair1lp) = —Coia(—p).

The remaining coefficients, 4,4, 4,, B, C,, , and §,, which determine the solution
with an error of O(2%), are obtained from equation (34) with application of equations (35)
and (37-40):

12

ODE: A} -2 2Ag+( QZ)AO =0 (41)

BC: [AS‘VUZAO]F:H = [AS'—(z“V)’TZAb]Fil =0, Ao(p) = Ao(—p)
2
ODE: Bj+3(1+vnC,—3(1—v’B, +Q}B, = —(I—V)ﬂAo—%('on—ﬂAS)

72
and ~31+vB, —n*C, +31—)C]+Q3C, = —(1—v) A, — 6 ( 245 —AY) (42)

2
BC: [Cy—nB,+240),-41 = |:B'1+vncl—%(1—v)nA{)] =0
p=11
e 2 g 4 12 2 —
ODE: A2 _2" A2+ ’1 _5)—2‘90 A2—
- |:2pA3’ +(2n2p% —(1+v)Ag +2pn* Ay + ((5+ v—2p%n*m* + Q2
12 12 12
+2(1—v)y——2§2092 2) :| |:2r]B'1'—(2173+(1—v)11?)Bl

—2C7 + (2n +(1—v)y )c] (43)

BC: [A;—vp?A,—(—vpAy—(B—v+wm’p))Ag+27(1—v)B))],- 4, = 0

and
[A’é’ —Q2-vntA,— (2C'1' —2(1-2v1*C, — ((2— vp’n?

2
(= — 1)A'0— 3n2pA0):| ~0
3 p==1

where ' denotes differentiation with respect to p.

Ao and Q, are obtained from the eigenvalue problem (41), B, and C, from the boundary
value problem (42), and A,, Q, from the boundary value problem (43) (see Appendix).

As the right-hand side of the differential equation (43) is of order (A4,/y?) the solution
A, will be of the same order. Furthermore it can be seen using equations (34) and (38) that

Az = O(A/7*) i=12,....
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Then, to assure the validity of the perturbation solution, it is necessary that
A Ky (44)

This inequality is a stronger limitation on A than the assumption (37).

Error estimate
The shell theory given in [9] is afflicted with an error O(¢), where
h?r h

— 4 —
12 min

& =

Here 1 is a characteristic wavelength of the deformation pattern on the middle surface
and r,;, is the numerically smallest radius of curvature.
For the pretwisted plate it can be shown that

Tmin = ka > k,

and therefore, when we neglect terms of O(4%) in the perturbation solution and make use
of equation (44), our final solution in the (m, n)-mode has a total error O(¢) where

2
&= yz(nz—%(%) mz) (45)

m and n are the number of waves in the u?-direction and in the u'-direction, respectively.

Shallow shell solution

When we neglect all terms of order O(y?) in the differential equations (34), it can be
shown that they are reduced to the equations given by Nordgren [7], who based his in-
vestigation on a shallow shell theory given by Naghdi [8]. In the following, we will com-
pare the results obtained from the two shell theories. From the reduced form of equation
(43), it can be shown that

A, ~y7 3, Q,~Q5t ~y (46)

3. RESULTS

When equations (41-43) are solved analytically-—a simple but laborious task (see

Appendix)}—we get the displacements and the eigenfrequencies.
For testing purpose, the equations were solved for the torsional vibrations and total

agreement was found between the present solutions and the results given by Nordgren
(Table 1 and Fig. 1 in [7]).

Bending eigenfrequencies
The eigenfrequencies w are given in the form

wlL? w,L?

JD/ph) "~ J(Dip,

2
h)( 140 +0(8)) 47)
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where w, are the corresponding eigenfrequencies for a flat plate given by Q, and

The frequency functions A and (woLz)/\/ (D/p,h) are plotted in Fig. 2(a}{(d) as regards
the four lowest bending eigenfrequencies. It should be remarked that according to (46),
A is independent of y in the shallow shell approximation, in contrast to the results ob-
tained from the more general shell theory [9]. Results derived by the shallow shell theory
are marked by *y — 0” in Fig. 2.

The parameter R/L, y, n and m are chosen in such a way that the error O(¢), where ¢
1s given by equation (45), is much smaller than unity. From the frequency curves we can
deduce the following properties of the natural frequencies corresponding to bending
modes:

(i): For modes (m,n), n > 2 there is only a slight difference between the solutions
obtained from the two shell theories, whereas for modes (m, 1) there is significant dis-
agreement.

(i1): The results derived from both shell theories show that for a pretwisted plate, we
obtain the greatest increase in the bending eigenfrequencies compared with a flat plate
when the dimension is nearly quadratic. For R/L — 0 or R/L — oo, the shallow shell

Ax104
(o]
N
|
|

0l 0-2 04 060810 2:0 40 6080
R/L

0l 0-2 0-4 060810 20 4.0 6080100
R/L
FI1G. 2(a).



1128

Ax10*

wo L2/ VDTpn

Tomh

w, Lz/

JORGEN JUNCHER JENSEN

100

o4 060810
R/L

20

100
80—
60—
40+~
20t~

|
04 060810
R/L
Fic. 2(b).

Lt ] I
20

02

060810
R/L

|
04

04 060810
RIL
Fig. 2(c).



Harmonic vibrations of pretwisted plates 1129

Ax104

Ol 02 0-4 060810 2.0 4-0 6080
R/L

30 | | [ )| I 1
01 02 04 060810 20 40 6080

R/L
Fi1G. 2(d).

theory shows that the eigenfrequencies tend towards the flat plate solution. Niordson’s
shell theory, on the other hand, shows that the eigenfrequencies drop to a value below the
eigenfrequencies of a flat plate.

(iii): The maximum increase in the eigenfrequencies is much smaller (with a factor 100)
for modes (m, 1) than for other modes, and furthermore, this maximum value decreascs
for higher axial modes (m).

A reasonable explanation of the discrepancies mentioned in (i) and (ii) above is that
Niordson’s first-order shell equations take into account the tangential sliding of the plate
along the simply supported edges. This effect is neglected in the shallow shell solution.
The average tangential displacement amplitudes at the supports are particularly large in
mode (m, 1). The inertia involved in the sliding will lower the eigenfrequencies and eventu-
ally neutralize, or even dominate, the effect of the increased bending stiffness gained by
the pretwist.
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APPENDIX

When equation (41) is solved in analytic form, we obtain the eigenfrequency Q, for
mode (m, n) as the nth solution of

a aj —-vnj 2 _tanh(a,) _ 0 A)
a,\aZ —wn tanh(a_)
where

nR

= Mmmn—

1 L

23
)

(A.2)

2./3
-2
The corresponding displacement function

Aolp) = Ko{(a® —vn?) cosh(o_) cosh(a, p)— (a2 — v?) cosh(a, ) cosh(x_p)}  (A.3)

where K is an arbitrary constant.
Equation (A.1) is solved numerically.
The solutions of the boundary value problem (42) are

B,(p) = Kb, cosh(ap)+ b, cosh(Bp)+ b cosh(x, p)+ b, cosh(_ p)} (A.4)

and
C,(p) = Ky{c, sinh(ap)+ ¢, sinh(fp)+ c; sinh(a, p)+ ¢, sinh(a_p)} (A.5)
where
o« = (n*—Q)*

2 ¥ (A.6)
oo

1

and the coefficients b;, ¢;, i = 1,2, 3,4 are known functions of , y and v, but independent
of p.
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The homogeneous part of the boundary value problem (43) is identical to the eigen-
value problem (41), hence, the inhomogeneous boundary conditions in (43) can only be
satisfied for a single value of Q,, which is thereby determined.

The associated displacement function is

Ay(p) = Kola,p sinh(x, p)+a,p? cosh(a, p)+asp® sinh(x. p)+a,p sinh(a_ p)
+asp? cosh(a_ p)+agp? sinh(x_ p) + a, cosh(ap)+ ag cosh(Bp)
+ag cosh(a_p)} + K, . Ag(p) (A.7)

where a;, i = 1,2,...,9 are known functions of 7, y and v, and K, is another arbitrary
constant.

To obtain single-valued displacements, it is necessary to normalize the displacements
in some manner. Here we choose the condition

1 .
J |[A(p, A)I2dp = 1. (A.8)
-1
With
Alp, 2) = Ag(p)+ 212 A,(p)+ 0% (A9)
equation (A.8) becomes
1
[ tadordp =1 (A.10)
—1
and
1
[ Aaspap -0 (A1)
-1

Equations (A.10) and (A.11) determine the two arbitrary constants K, and K.

(Received 28 September 1972 ; revised 20 February 1973)

AGcTpakT—B pabote ucnosb3yercs Teopus o0onovek ANIs aHamu3a CBOOOOHBIX KoyieOaHHMl TOHKMX,
PaBHOMEPHO NPEIBAPUTENBHO CKPYYEHHBIX, MPSAMOYLOJBHAIX IUIACTHHOK, LWIAPDHHPHO ONEPTHIX HA ABYX
MPOTHBONONOKEHHRIX KPasiX M CBOGOMHBIX HA JPYTHX.

Hcxona u3 ypaBHeHHM 000/I04EK, MOKHO NPOCIIEANTD, YTO COEAMHEHHE MEXIY KDY THABHEIMA M H3rHO-
HbIMH KOJI€OaHMSIMU HHUKOTA IPOMCXOANT HE3aBHCHMO OT IPEABAPHTENBHOrO Ckpydenusi. Kpome Ttoro,
MOKA3EIBAETCA YTO COOCTBEHHBIE YACTOTHI BO BCEX ClIydasX ABIAIOTCA, Aaxe, GYHKUMAMH YIia NpeaBapUT-
€JILHOTO CKPYYEHHMS.

15 ciyyas Majioro IPeABaPUTENBLHOIO CKPYYEHHs YPaBHEHH 000JIOEK PEILAIOHCS CIOCOO0M HOpMAIT-
BHOI'O BO3MYILICHHSI. B 3aBHCHMOCTH OT I€OMETPHM INKACTHHKH, PELUEHHE YKa3bIBaeT, YTO COOTHOIUECHHSA
MEXy YaCTOTaMM IJisi 3ruba ¢ npeaBapUTENIbHEIM CKPYYEHHEM MK 6€3 MOTYT HOCTHraTh 3HAYEHMsI KaK
Oonee eqUHMLIBI, TAK X MEHBILE,



