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HARMONIC VIBRATIONS OF PRETWISTED PLATES

J0RGEN JUNCHER JENSEN

Department of Solid Mechanics, The Technical University of Denmark, Lyngby, Denmark

Abstract-In this paper shell theory is used to analyse the free vibrations of thin, uniformly pretwisted, rect­
angular plates, simply supported at two opposite edges and free at the other two edges.

From the shell equations we can deduce that coupling between torsional and bending vibrations never occurs
independent of the pretwist. Furthermore, it is shown that the eigenfrequencies are in all cases even functions
of the angle of pretwist.

When the pretwist is small the shell equations are solved by means of regular perturbation, and the solution
shows that the ratios between the bending frequencies with and without pretwist can be either greater than or
smaller than unity, depending on the geometry of the plate.

INTRODUCTION

THE development of turbine blades has resulted in a great deal of work on pretwisted
beams and plates.

All the problems relating to pretwisted, rectangular beams have been solved using
the ordinary Bernoulli-Euler beam theory. In particular, Troesch, Anliker and Ziegler [1]
and Anliker and Troesch [2] have found the eigenfrequencies for all possible combinations
of simple boundary conditions.

More difficulties arise when it is necessary to use Timoshenko's beam theory or,
especially, when a shell theory is used, because of the complexity ofthe governing equations.

Most of the problems that have been solved by means of shell equations concern the
static behaviour of thin, rectangular, pretwisted plates. Knowles and Reissner [3] deter­
mined the torsional rigidity and the axial stiffness as functions of the angle of pretwist,
solving the differential equations by means of a perturbation method. The solution of the
bending problem is given by Wan [4, 5] and by Maunder and Reissner [6].

In the determination of the eigenfrequencies a serious problem arises as even for a
flat, rectangular plate, analytical solutions only exist for very few combinations of the
simple boundary conditions. Nordgren [7] found the eigenfrequencies for pretwisted,
rectangular plates with two opposite edges simply supported and the two other either
free or simply supported. These solutions were based on a formulation of shallow shell
solutions for elastokinetics given by Naghdi [8]. Furthermore, approximate formulae for
the torsional frequencies are found by Reissner and Washizu [10] and by Di Prima [11].

The present work treats the same problem as [7], but a more general shell theory given
by Niordson [9] will be used. The shell equations will be solved by a regular perturbation
method when the pretwist is small.
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1. SHELL THEORY

Surface geometry

As shown in Fig. 1, we choose a coordinate system so that a point (U l , u2
) on the middle

surface of the pretwisted plate has the cartesian coordinates

(1)

f'

.'0 t'

FIG. I.

where

k = L/e,

L is the length, R the half-width and e the total pretwist of the plate.
In the following we shall use, for the sake of brevity,

(2)

(3)

and in all definitions and relations to follow, Latin indices denote three-dimensional
cartesian components, while Greek superscripts and subscripts refer to contravariant and
covariant surface tensor components. The summation convention is applied as usual.
Partial differentiation with respect to the surface coordinates is denoted by commas, and
covariant differentiation (based on the geometry of the undeformed shell) is denoted D~.

The metric tensor is

a~p = (~ ~)
where

The normal to the plate

Xi = a--t(sin(u2/k), -cos(u2/k), r/k).

(4)

(5)

(6)
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The covariant and the mixed curvature tensor are

-1 (0 1)d --ap - kat 1 0

and

-1(0 a-i)dP--
a - kat 1 0

The only nonvanishing components of the Christoffel symbols are

1119

(7)

(8)

{ I} -r
2 2 = 12'

r
= ak2 '

(9)

It should be noted that this geometry refers to the undeformed middle surface.

Deformations

According to the theory of shells given by Niordson [9], the deformations of the middle
surface can be completely described by the membrane strain tensor

Eap = i(Davp+Dpva)-dapw (10)

and the bending strain tensor

K aP = DaDpw+dayDpvY+dpyDavY+vYDpdya-dpyd~w (11)

where va and ware the displacements in the direction of the surface base vectors and in
the direction of the surface normal, respectively. These displacements are functions of
ul, u2 and time t. Niordson's shell equations are a consistent first-order, linear shell theory
in the sense of Koiter [12].

The relations between va, wand the displacements ii in the cartesian coordinate system
are given by

(12)

Hooke's law

For the homogeneous and elastically isotropic medium we assume the following
constitutive equations

(13)

and

Map = D«(l-v)KaP+vaaPK~) (14)

where E is Young's modulus, v is Poisson's ratio, and h is the plate thickness. Further­
more, D and D 1 are defined by

and

Eh3

D = 12(1- v2)

Eh
D i =-l2'-v

(15)
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The stresses and the couples are given in terms of the symmetric membrane stress tensor
NaP and the symmetric moment tensor MaP.

The equations of equilibrium

The equilibrium conditions are

D NaP+2dPD MaY+MaYD dP+FP = 0cr y a « }'

and

(16)

(17)D D M"P-d dPMaY-d N"P- p = 0ap apy ap

where P and p are the external loads per unit area of the middle surface, acting in the
directions of the surface base vectors and the surface normal, respectively. In the following,
where we are concerned with free vibrations, the external loads are equal to the d'Alembert
loads.

The d'Alembert loads per unit volume:

where Pm is the density and the acceleration ai is determined by

(18)

{i} 'k's ••;v v ~ v.
ks

(19)

We have neglected nonlinear terms because we are using a linear shell theory. A dot
denotes differentiation with respect to time. In equation (19) v3 means w.

According to [9] we transform the body forces pi to equivalent surface forces as follows
(where the variation of the displacements across the shell thickness is neglected):

(20)

and

(21)

where we have made use of

H = the mean curvature = td: = 0

K = the Gaussian curvature = a- 1 det(d"p) = -(ka)-2.

In the linear approximation, the free vibrations will be harmonic, i.e.

i5a(u 1, u2 , t) = - aiv"(u 1
, u2

, t) and w(u\ u2
, t) = ro2

W(U
1

, u2
, t) (22)

where ro are the eigenfrequencies of the shell.
From now on, va, w denote the displacements as functions of u1

, u2 only, and the total
displacements are then given by va sin rot and w sin rot, with suitable choice of the time
origo. The same applies to all other functions of va and w, because of the linearity, and in
the following these functions represent the (u 1

, u2
) dependent parts only.
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Boundary conditions

The plate under consideration is simply supported at u2 = 0, L and free at u1 = ±R.
According to the theory of shens [9], the boundary conditions on a free edge are

T'% = Q = M H = 0 (23)

and the boundary conditions at a simply supported edge, with normal constraint, are

w = v"n" = T"t" = MB = 0

where the effective boundary membrane force per unit length is

T" = (N"P +~MPY +d~tqt¥MPq)np,

the effective transverse force per unit length is

(24)

(25)

(26)
a

Q = -(D"M"P)np- os(MI7.{>n,ip),

and th(' hn "di'1g moment per unit length is

M H = M"Pn"np. (27)

Furthermore, nl7. denotes the unit normal vector to the edge (in direction outward from
the edge), t" denotes the unit tangent vector, and s measures length along the edge.

Between UI7. and tl7. there exists the following relation

where

Furthermore,

_ t{ 0 1)sl7.P - a •
-1 0

o du"o 17.0
-=--=t-.
os ds fJul7. oul7.

(28)

(29)

(30)

Application of (23-30) results in the following boundary conditions at the free edges
where UI7. = HI,O)

(31)

and at the simply supported edges, where n" = ±at(O, 1),

w = v2 = 0,
(32)

Now the complete set of equations to determine v'" = v"'(u 1
, u2

), W = w(u 1
, u2

) and co
are given.
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2. NON-DIMENSIONALIZATION AND SIMPLIFICATION

We introduce the following dimensionless functions

p == r/R

y == h/R

A. == R/k = R0/L

w == w/R

v~ == v~/R

m~11 == M~I1/RDI

n~11 == N~I1/Dl

(33)

The last equation shows the relation between nand wL2/(D/Pmh)-t, which is normally
used in the literature as dimensionless frequency.

Substitution of equation (33) in the complete set of equations transforms these into
the following form (where E~11 and K~11 have been eliminated)

(
1 2..1.)n21 = 1(1- v) v2 +-v l +-w

2 ,I a·2 at

(34)
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2A 21 2 ( 1 A
2y2) = °+-n -0 w 1----

at 12 a2

2A
p = +1:n ll __m2l = n2l = m?+2m21-pA2m22 = mIl = °- at "

u2/R = 0, L/R:w = v2 = m22 = n2l = 0.

1123

Now ,I and ,2 means differentiation with respect to p and u2/R, respectively. It can be
shown that these equations are in agreement with [3-5J.

From equations (34), we can deduce the following results:
(i): The equations can be separated into a system of ordinary differential equations

by the substitution

where

w(p, u2
/ R, A) = A(p, A.) sin(l1u2/R)

vl(p, u2/R, A) = B(p, A) COS('1u2/R)

v2(p, u2
/ R, A) = C(p, A) sin(l1u2/R)

(35)

m = 1,2, .... (36)

In particular, it will be seen that the boundary conditions at u2/R = 0, L/R are
identically satisfied.

Equations (35) show that the u2-dependence of the displacements is independent of
the pretwist A.

(ii): Inspection of equation (34) shows that the solution depends on A in one of the
following ways

{w, mIl, m2l , m22, 0 even functions of A
(a)

VI v2 nIl n2l n22 odd functions of A, , , ,

{VI v2 nIl n2l n22 0 even functions of A
(b)

, , , , ,
w, mIl, m2l , m22 odd functions of A..

When A = 0, i.e. without pretwist, the first solution is reduced to the normal plate­
solution, where Vi == v2 == naP == 0, and the second solution is reduced to the disc-solution,
where w == maP == 0.

This shows, as is known, that there is no coupling between plate-like and disc-like
vibrations for a flat plate. On the contrary, equations (34) show that such coupling occurs
when the plate is pretwisted.

Note that the eigenfrequencies 0 are always even functions of A, which, physically,
means that they are independent of the direction of the pretwist.
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(iii): We further see that the solution to equation (34) depends on P in one of the
following two ways:

or

even functions of P

odd functions of P

even functions of P

odd functions of p.

This is due to the fact that a function, defined in a closed interval, can always be decom­
posed into an even and an odd part and that when an even/odd function is differentiated,
we get an odd/even function.

The physical significance of these results is most easily seen by looking at the dis­
placements, transformed to the more convenient cylindrical coordinate system,

v, = the radial displacement = VI

Va = the circumferential displacement = v2 -k
r

- ~aT

r
Va = the axial displacement = V

2 +kat w.

Thus the circumferential displacement is either an even or odd function of p and con­
sequently, the bending and the torsional vibrations are always uncoupled.

Perturbation solution

When equation (35) is substituted in (34) we obtain a set of ordinary differential
equations nonlinear in ),. These equations cannot be solved in analytic form for any value
of A, but in the following, they are solved on the assumption that the pretwist is small, i.e.

l « 1. (37)

To solve the equations (34) with (37), we expand all terms in equations (34) in power
series in A and obtain a new set of equations that are independent of A. As unknow"'n we
have the coefficient functions in the power series,

A(p,l) = A o(p)+lAt(p)+l2A 2(p)+O(l3)

B(p,A) = B o(p)+AB t (p)+A2B 2(p)+O(A3)

C(p, l) = C o(p)+AC t (p)+l2C 2(p)+O(l3)

n(A) = no +A2n2+ O(l4).

(38)

The coefficients with index 0 refer to the solution for a flat plate.
As a further simplification we will only consider one of the four possibilities mentioned

before, namely plate-like bending vibrations, and consequently we find

(39)



and
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(40)

A2i(P) = A 2i( - p)

B2i + 1(P) = B2i + 1(-P)

C2i + l(P) = - C2i + l( - p).

The remaining coefficients, Ao, A 2 , B 1 , Cl' no and n2 , which determine the solution
with an error of O(A,3), are obtained from equation (34) with application of equations (35)
and (37--40):

ODE: A~'-21]2A~+ (1]4- :;(6)Ao = 0 (41)

BC: [A~-V1]2Ao]p;±1= [A~-(2-v)1]2A~]p;±1 = 0, Ao(p) = Ao(-p)

2

ODE: B~+!(1+V)1]C'l-!(1-v)1]2Bl+n6Bl= -(1-V)1]Ao-: (1]3Ao-1]A~)

2

and -!(1 + v)1]B~ - 1] 2C 1 +!(1- v)C~ +n6C 1 = - (1- v)A~-: (1]2A~ - AD') (42)

Be: [C'l -1]B l +2Ao]p; ± 1 = [B'l + V1]C l - ~ (1- v)1]A~1;± 1 = 0

ODE: A2"-21]2A;+(1]4- :;(6)A2=

- [2PAD' + (21]2 p2-(1 + v))Ao+2p1]2A~ + ((5 + v - 2p21]2)1]2 +n5

+2(1- v) :; -2nOn 2:;)AoJ - [21]B'{ - (21]3 +(1- v)1] :;)Bl

- 2C'{' + (21]2 +(1- v) :;) C'lJ (43)

BC: [A; - V1]2 A 2-( - vpA~ -(3 - V+ V1]2 p2)Ao+21](1- v)Bl)]p; ±l = 0

and

[ A2' -(2- V)1]2A~ - (2C'{ -2(1-2v)1]2Cl - ((2- v)p21]2

+y2(1-V)1]2-1)A~-31]2PAo)J = 0
3 p;±l

where I denotes differentiation with respect to p.
A o and no are obtained from the eigenvalue problem (41), B 1 and C 1 from the boundary

value problem (42), and A 2 , n2 from the boundary value problem (43) (see Appendix).
As the right-hand side of the differential equation (43) is of order (A O/y2) the solution

A 2 will be of the same order. Furthermore it can be seen using equations (34) and (38) that

A2i = O(A O/y2i) i = 1,2, ....
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Then, to assure the validity of the perturbation solution, it is necessary that

A « y.

This inequality is a stronger limitation on A than the assumption (37).

Error estimate

The shell theory given in [9J is afflicted with an error 0(1'), where

h2 h
1'=-2+-'

1 rmin

(44)

Here 1 is a characteristic wavelength of the deformation pattern on the middle surface
and rmin is the numerically smallest radius of curvature.

For the pretwisted plate it can be shown that

rmin = ka > k,

and therefore, when we neglect terms of O(A3) in the perturbation solution and make use
of equation (44), our final solution in the (m, n)-mode has a total error 0(1') where

(45)

m and n are the number of waves in the u2-direction and in the u1-direction, respectively.

Shallow shell solution

When we neglect all terms of order 0(y2) in the differential equations (34), it can be
shown that they are reduced to the equations given by Nordgren [7J, who based his in­
vestigation on a shallow shell theory given by Naghdi [8]. In the following, we will com­
pare the results obtained from the two shell theories. From the reduced form of equation
(43), it can be shown that

(46)

3. RESULTS

When equations (41--43) are solved analytically-a simple but laborious task (see
Appendix}-we get the displacements and the eigenfrequencies.

For testing purpose, the equations were solved for the torsional vibrations and total
agreement was found between the present solutions and the results given by Nordgren
(Table 1 and Fig. 1 in [7J).

Bending eigenfrequencies

The eigenfrequencies ware given in the form

(47)
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where W o are the corresponding eigenfrequencies for a flat plate given by no and

1127

(
R ) _ n2(R)2 2

~ = ~ L' v, y = no L y. (48)

The frequency functions ~ and (woU)/J(D/Pmh) are plotted in Fig. 2(aHd) as regards
the four lowest bending eigenfrequencies. It should be remarked that according to (46),
~ is independent of y in the shallow shell approximation, in contrast to the results ob­
tained from the more general shell theory [9]. Results derived by the shallow shell theory
are marked by "y ---> 0" in Fig. 2.

The parameter R/L, y, nand m are chosen in such a way that the error O(e), where e
is given by equation (45), is much smaller than unity. From the frequency curves we can
deduce the following properties of the natural frequencies corresponding to bending
modes:

(i): For modes (m, n), n ~ 2 there is only a slight difference between the solutions
obtained from the two shell theories, whereas for modes (m, 1) there is significant dis­
agreement.

(ii): The results derived from both shell theories show that for a pretwisted plate, we
obtain the greatest increase in the bending eigenfrequencies compared with a flat plate
when the dimension is nearly quadratic. For R/L ---> 0 or R/L ---> 00, the shallow shell
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theory shows that the eigenfrequencies tend towards the flat plate solution. Niordson's
shell theory, on the other hand, shows that the eigenfrequencies drop to a value below the
eigenfrequencies of a flat plate.

(iii): The maximum increase in the eigenfrequencies is much smaller (with a factor 1(0)
for modes (m, 1) than for other modes, and furthermore, this maximum value decreases
for higher axial modes (m).

A reasonable explanation of the discrepancies mentioned in (i) and (ii) above is that
Niordson's first-order shell equations take into account the tangential sliding of the plate
along the simply supported edges. This effect is neglected in the shallow shell solution.
The average tangential displacement amplitudes at the supports are particularly large in
mode (m, 1). The inertia involved in the sliding will lower the eigenfrequencies and eventu­
ally neutralize, or even dominate, the effect of the increased bending stiffness gained by
the pretwist.
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APPENDIX

When equation (41) is solved in analytic form, we obtain the eigenfrequency no for
mode (m, n) as the nth solution of

rx_ (rx~ - V1]2)2 _ tanh(rx+) = 0
rx+ rx=--VI]2 tanh(rx_)

where

R
I] = mn-

L

(A.2)

The corresponding displacement function

Ao(p) = Ko{(rx=- - V1]2) cosh(cc) cosh(rx+p)-(rx~- V1]2) cosh(rx+) cosh(rx_p)} (A.3)

where K o is an arbitrary constant.
Equation (A.!) is solved numerically.
The solutions of the boundary value problem (42) are

BJ(p) = Ko{b J cosh(rxp)+b2 cosh(f3p)+b3 cosh(rx+p)+b4 cosh(rx_p)} (AA)

and

where

(A.6)

and the coefficients bi' c j , i = 1,2,3,4 are known functions of I],}' and v, but independent
of p.
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The homogeneous part of the boundary value problem (43) is identical to the eigen­
value problem (41), hence, the inhomogeneous boundary conditions in (43) can only be
satisfied for a single value of °2 , which is thereby determined.

The associated displacement function is

A 2(p) = KO{alP sinh(lX+p)+a2p2 cosh(lX+p)+a3p3 sinh(lX+p)+a4 P sinh(lX_p)

+asp 2 cosh(lX_p)+a6p3 sinh(lX_p)+a7 cosh(lXp) + as cosh(fJp)

+ag cosh(lX_p)} + K 2 • Ao(p) (A.7)

where ai' i = 1,2, ... ,9 are known functions of I}, y and v, and K 2 is another arbitrary
constant.

To obtain single-valued displacements, it is necessary to normalize the displacements
in some manner. Here we choose the condition

(A.8)

With

(A.9)

equation (A.8) becomes

and

f 1 Ao(p)A 2(p) dp = O.

Equations (A. to) and (A.11) determine the two arbitrary constants K o and K 2.

(Received 28 September 1972; revised 20 February 1973)

(A. to)

(A. 11)

A6CTpaKT--B pa60Te Hcrrollb3yeTcH TeopHH 060ll0qeK ~llH aHallH3a cBo60~HWX KOlle6aHHH TOHKHX,

paBHoMepHo rrpe~BapHTellbHo cKpyqeHHblX, rrpHMoyrollbHblX rrnacTHHoK, wapHHpHo orrepTblx Ha ~BYX

rrpoTHBorrollolKeHHwx KpaHx H CB060~HbIX Ha ~pyrHx.

MCXO~HH3 ypaBHeHHH 060ll0qeK, MOlKHO rrpoclle~HTb,qTO coe~HHeHHeMelK~y KPYTHllbHblMH H H3rH6­

HblMH KOlle6aHHHMH HHKor~a rrpoHcxo~HT He3aBHCHMO OT rrpe~BapHTellbHorocKpyqeHHH. KpoMe Toro,

rrOKa3bIBaeTCH qTO c06cTBeHHbie qaCTOTbl BO Bcex cllyqaHX HBllHIOTCH, ~alKe, cIlYHKI.\HHMH yrlla rrpeABapHT­

ellbHoro cKpyqeHHH.

,UllH cllyqaH Malloro rrpe~BapHTellbHorocKpyqeHHH ypaBHeHHH 060ll0qeK pewalOHcH crroc060M HopMall­

bHoro B03MymeHHH. B 3aBHCHMOCTH OT reoMeTpHH rrKaCTHHKH, peweHHe yKa3blBaeT, qTO COOTHoweHHH

MelK~y qaCTOTaMH ~llH H3rH6a C rrpe~BapHTellbHblM cKpyqeHHeM HllH 6e3 MoryT ~OCTHraTb 3HaqeHHH KaK

GOllee e~HHHl.\bl, TaK H MeHbwe.


